Exactness of the Mayer-Vietoris Sequence in Homotopy Type Theory

نویسندگان

  • Robert Harper
  • Daniel R. Licata
  • Carlo Angiuli
  • Ed Morehouse
چکیده

∗This research was sponsored in part by the National Science Foundation under grant numbers CCF-1116703 and CCF-1445995 (REU). The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. See http://homotopytypetheory.org/2013/07/24/cohomology/ for a formulation and exposition of these axioms in homotopy type theory. A specification of the axioms in Agda is available at https://github.com/HoTT/HoTT-Agda/ blob/master/cohomology/Theory.agda.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to De Rham Cohomology

We briefly review differential forms on manifolds. We prove homotopy invariance of cohomology, the Poincaré lemma and exactness of the Mayer–Vietoris sequence. We then compute the cohomology of some simple examples. Finally, we prove Poincaré duality for orientable manifolds.

متن کامل

Witt Cohomology, Mayer-vietoris, Homotopy Invariance and the Gersten Conjecture

We establish a Mayer-Vietoris long exact sequence for Witt groups of regular schemes. We also establish homotopy invariance for Witt groups of regular schemes. For this, we introduce Witt groups with supports using triangulated categories. Subsequently we use these results to prove the Gersten-Witt Conjecture for semi-local regular rings of geometric type over infinite fields of characteristic ...

متن کامل

TORIC VARIETIES, MONOID SCHEMES AND cdh DESCENT

We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties and schemes, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop many notions for monoid schemes based on classical algebraic geometry, such as separ...

متن کامل

Mayer-vietoris Sequences in Stable Derivators

We show that stable derivators, like stable model categories, admit Mayer-Vietoris sequences arising from cocartesian squares. Along the way we characterize homotopy exact squares, and give a detection result for colimiting diagrams in derivators. As an application, we show that a derivator is stable if and only if its suspension functor is an equivalence.

متن کامل

Math 215b Notes: Algebraic Topology

1. Simplices, ∆-Complexes, and Homology: 1/8/15 1 2. Properties of Singular Homology: 1/13/15 4 3. Homotopy Invariance of Singular Homology: 1/15/15 7 4. Applications of Homotopy Invariance and Excision: 1/20/15 10 5. Equivalence of Singular and Simplicial Homology: 1/22/15 14 6. Degrees of Maps on Sn: 1/27/15 17 7. The Mayer-Vietoris Sequence and Applications: 1/29/15 20 8. CW Complexes: 2/3/1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015